Lycée TEBOULBA Prof : BEN KAHLA JAWHER

Devoir de synthèse n° 2 Sciences physiques

Classe: 4^{ème} Sc exp 3 07 Mars 2020 Durée: 3 heures

Chimie

(9 points)

Exercice n°1:

(4,5 points)

Toutes les solutions sont prises à 25° C, température à laquelle le produit ionique de l'eau est Ke = 10^{-14} . On néglige les ions provenant de l'ionisation propre de l'eau.

Une monobase est considérée comme faiblement ionisée dans l'eau si le taux d'avancement final de sa réaction avec l'eau est inférieur à 5.10⁻².

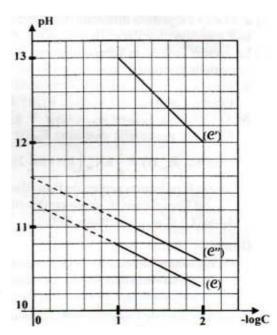
On donne dans le tableau suivant, les molarités et les pH de trois solutions aqueuses basiques :

Solution	Molarité	pН
(S ₁) d'ammoniac NH ₃	$C_1 = 10^{-2} \text{ mol.L}^{-1}$	$pH(S_1) = 10,625$
(S ₂) de soude NaOH	$C_2 = 10^{-3} \text{ mol.L}^{-1}$	$pH(S_2) = 11$

- 1) Montrer que l'ammoniac est une base faible et que la soude est une base forte.
- 2)a) Justifier que l'ammoniac est faiblement ionisée dans l'eau.
- b) Etablir l'expression pH(S₁) = $\frac{1}{2}(pK_{a1} + pKe + log(C_1))$ de la base faible NH₃ (tout en justifiant les approximations utilisées).
 - c) Déduire l'expression de $pH(S_1)$ en fonction de pK_{b1} , du pKe et de C_1 .
- 3) Déterminer la valeur de pK_{a1} du couple acide-base correspondant à l'ammoniac.
- 4) On prépare une solution (S'_1) d'ammoniac, en diluant 10 fois la solution (S_1) .

En exploitant la valeur de taux d'avancement final τ_{f1} et celle de τ'_{f1} correspondantes respectivement aux systèmes (S_1) et (S'_1), déduire l'effet d'une dilution sur l'ionisation d'une base faible.

aux systèmes (S_1) et (S_1'), déduire l'effet d'une dilution sur l'ionisation d'une base faible. 5) On dispose de trois autres solutions basiques (S_{B1}), (S_{B1}) et (S_{B1}) respectivement de monobases B_1 , B_2 et B_3 de même concentration molaire $C_0 = 10^{-1}$ mol. L^{-1} . La mesure, dans un ordre quelconque de pH de ces solutions à donné les valeurs : 13,0 ; 10,8 et 11,1.


Sachant que les trois bases sont classées par ordre croissant de basicité comme indiqué ci-dessous :

- a) En justifiant la réponse, attribuer à chaque solution le pH correspondant.
- b) Pour différentes valeurs de la concentration molaire C (variant de 10^{-2} à 10^{-1} mol. L^{-1}) des solutions relatives aux trois monobases précédentes B_1 , B_2 et B_3 , on mesure séparément le pH correspondant, puis on représente à chaque fois la courbe pH en fonction de (-log C). On obtient alors les courbes (\mathcal{C}), (\mathcal{C}) et (\mathcal{C} ") de la figure ci-contre.
- $\mathbf{b_{1}}$ En justifiant la réponse, attribuer chaque courbe à la base correspondante.

b₂- En exploitant les courbes, déterminer :

- Les valeurs des constantes ${\bf pK_{b1}}$ et ${\bf pK_{b2}}$ respectivement des couples B_1H^+ / B_1 et B_2H^+ / B_2 ;
- Les valeurs des concentrations molaires C'_{B1} et C'_{B2} respectivement des solutions (S'_{B1}) et (S'_{B2}) , correspondant aux bases B_1 et B_2 , ayant le même pH de valeur 10,6.

 \emph{O} n se propose de réaliser le dosage pH-métrique d'une solution (S_a) d'acide propanoïque C_2H_5COOH . Pour cela on introduit un volume $V_a=10$ mL de cette solution et un volume V_e d'eau dans un bécher qu'on dose par une solution (S_b) d'hydroxyde de sodium NaOH de molarité $C_b=0.1$ mol.L⁻¹.

On obtient la courbe $pH = f(V_b)$ de la figure 1 de la page 5. On donne : Le pke =14 ;

- 1) Compléter la légende de schéma du dispositif du dosage (sur la figure 2 de la page 5 à rendre).
- 2) Déterminer les coordonnés de point E d'équivalence acido-basique.
- 3) Justifier que l'acide propanoïque est un acide faible.
- 4) Déterminer la valeur de la concentration molaire C_a de la solution (S_a).
- 5) a- Ecrire l'équation bilan de la réaction qui se produit au cours de ce dosage.
 - b- Montrer que cette réaction est pratiquement totale.
- 6) Déterminer le volume V_e d'eau ajouté avant de commencer le dosage.
- 7) Justifier la valeur de pH de milieu réactionnel pour $V_B = 20$ mL.

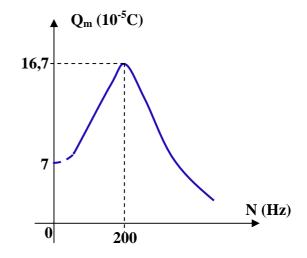
Physique (11 points)

Exercice n°1: (4 points)

Un oscillateur électrique est constitué par un circuit RLC série formé d'un condensateur de capacité C, d'une bobine d'inductance L et de résistance supposée nulle, d'un résistor de résistance R et d'un générateur GBF qui alimente l'ensemble par une tension sinusoïdale : $u(t) = U_m \sin{(2\pi N \ t)}$ avec $U_m = 10 \ V$.

On rappelle que l'expression de l'amplitude Q_m de la charge q peut s'écrire en fonction de la

fréquence excitatrice N du GBF par la relation suivante :
$$Q_m = \frac{U_m}{\sqrt{R^2(2\pi N)^2 + (\frac{1}{C} - L(2\pi N)^2)^2}}$$
,

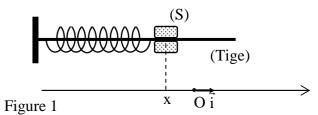

et que la résonance de charge est obtenue pour une fréquence N_r donnée par l'expression:

$$N_r = \sqrt{N_0^2 - \frac{R^2}{8\pi^2 L^2}}$$
 avec N₀ désigne la fréquence propre de l'oscillateur. On donne : N₀ = 210 Hz.

1) Une étude expérimentale a permis de tracer la courbe d'évolution de l'amplitude Q_m en fonction de la fréquence excitatrice N.

On obtient l'allure de la figure ci-contre.

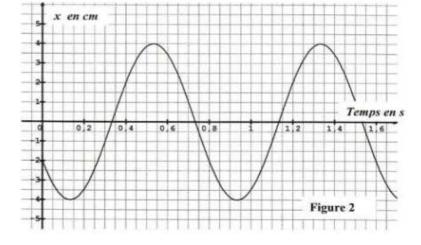
- a) Proposer une méthode expérimentale permettant de déterminer la valeur de Q_m.
- b) Déterminer graphiquement :
 - b_1) la fréquence N_r ;
- $b_2)\,$ la valeur de la charge $\boldsymbol{Q_{mr}}$ lorsque $N=N_r$;
- b_3) la valeur de la charge $\mathbf{Q}_{\mathbf{m0}}$ lorsque N tend vers 0.
- c) En déduire la valeur de chacune de C, L et R.


- 2) Un pendule élastique horizontal est constitué d'un solide (S) de masse m = 100 g et d'un ressort de masse négligeable et de constante de raideur k = 20 N.m⁻¹. Au cours de son mouvement le solide (S) est soumis à l'action d'une force de frottement visqueux $\vec{f} = -h \vec{v}$ et d'une force excitatrice sinusoïdale $\vec{F}(t) = F_m \sin(2\pi Nt).\vec{i}$.
 - a) Par recours à l'analogie électrique-mécanique déduire :
 - a_1) L'équation différentielle régissant l'élongation x(t) du centre d'inertie G d'un solide (S);
 - $a_2)$ L'expression de l'amplitude X_m de l'élongation $\varkappa(t)$ et celle de la fréquence $N_r.$
 - b) Pour avoir la résonance d'élongation, montrer que le coefficient de frottement h de la force de

frottement visqueux doit être inférieur à une valeur limite \mathbf{h}_{lim} que l'on déterminera son expression en fonction de la masse m du solide (S) et de la raideur k du ressort. Calculer sa valeur.

c) Discuter le cas particulier de frottement négligeable (h tend vers 0) a la fréquence $N=N_0$; Conclure.

Exercice n°2: (4 points)


Un pendule élastique horizontal est constitué d'un solide (S) de masse m et de centre d'inertie G, fixé à un ressort (R) d'axe horizontal, à spires non jointives, de masse négligeable et de raideur K.

L'extrémité gauche du ressort (R) est maintenue fixe. Le solide (S) se déplace, sans frottement, sur un guide horizontal (Tige). On désigne par x(t) l'abscisse de centre d'inertie G de (S), à un instant de date t, dans le repère (O, \vec{i}) ; A l'équilibre, le centre d'inertie G de (S) coïncide avec l'origine O du repère (O, \vec{i}) d'axe (x'x). Les frottements sont **négligeables**.

On écarte (S) de **2 cm** de sa position d'équilibre, puis lancé avec une vitesse initiale v_0 . La figure 1 est un exemple des positions x lorsque (S) est en mouvement. Les variations de x(t) sont données par la figure 2.

- 1) a) En exploitant la figure 1 de la page a rendre, établir l'équation différentielle en x(t) régissant le mouvement de (S).
- b) Vérifier que : $\mathbf{x}(t) = \mathbf{X}_{m} \sin(\mathbf{w}_{0} t + \phi_{x})$ est une solution de cette en déterminant l'expression de \mathbf{w}_{0} ; nommer \mathbf{w}_{0} .
 - 2) Par exploitation de la courbe de la figure(2) :
 - a) Déterminer : $X_m\,,\,w_0\;$ et $\,\phi_{\,x}\,.$
 - b) Déterminer la valeur de la constante de raideur k de ressort, sachant que m = 160g.
 - c) Préciser le sens de la vitesse de (S) a t = 0 s.
 - d) Préciser si le solide a été écarté vers la gauche ou vers la droite initialement.
 - 3) Déterminer la valeur algébrique v_0 .
 - 4) a) Montrer que l'énergie mécanique E de l'oscillateur se conserve.
 - b) Calculer la valeur de E.
 - c) Déduire la valeur algébrique v_1 de la vitesse a la date $t_1 = 0.7s$.
- 5) Représenter (en justifiant) l'allure de la courbe donnant la variation de l'énergie potentielle élastique E_{pe} au cours de temps, et celle de l'énergie cinétique E_c , sur la figure 3 de la page à rendre.

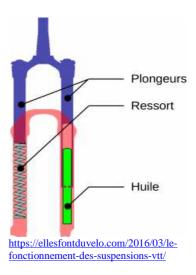
Exercice n°3: (3 points)

Etude d'un Document scientifique: Optimisation d'une fourche de V.T.T

Les vélos tout terrain sont de plus en plus souvent équipés d'une fourche à suspension. Sa présence offre confort et précision de trajectoire. La fourche comprend deux parties :

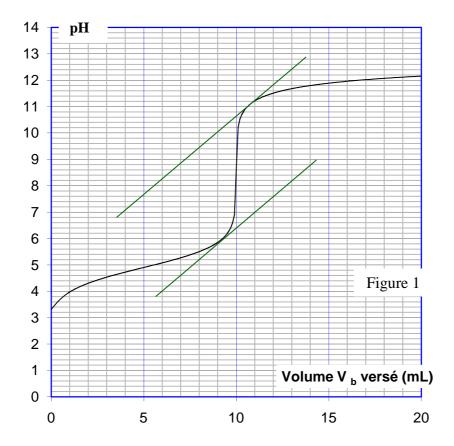
Lycée Teboulba Prof : Ben Kahla Jawher 4ème Sc exp Devoir de synthèse n°2 Sciences physiques 3/6

<u>La suspension</u>: Après un choc, elle permet un retour plus ou moins rapide à la position initiale. Pour cela, on dispose à l'intérieur des fourreaux, c'est à dire dans les bras de la fourche, un système équivalent à un ressort. Ce ressort transforme chaque choc dû à l'irrégularité du sol en impulsion élastique qui permet d'atténuer les inégalités du sol afin d'assurer un certain confort mais aussi un minimum de tenue de route. Seul le système n'est pas idéal car, suite à une excitation, il peut engendrer une série importante d'oscillations dangereuses pour la tenue de route et inconfortables. Il convient donc d'adjoindre au ressort, un dispositif permettant d'amortir ses oscillations, c'est le rôle de l'amortisseur.


<u>L'amortisseur</u>: Le plus performant reste l'élément hydraulique. On utilise l'aptitude de certaines huiles à opposer une résistance lorsqu'on les force à passer à travers un espace réduit. En agissant à la fois sur le nombre de ces passages et sur leurs tailles (clapets), et sur la viscosité de l'huile, on arrive à régler avec précision l'importance de l'amortissement. Lors d'un choc, l'huile passe rapidement par les clapets ou les trous, offrant ainsi une résistance qui ralentit le mouvement de compression du ressort. Lorsque le ressort se détend, l'huile rejetée par les clapets qui se sont refermés, ralentit cette fois le retour à la position normale, diminuant le phénomène d'oscillations. [...]

raideur du ressort : k= 10 000 N/m ; masse du vélo + cycliste : 100 kg ; g= 10 m/s².

http://www.chimix.com/devoirs/t127.htm

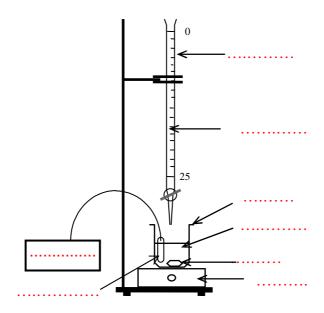
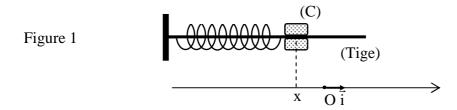

Questions:

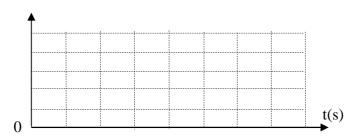
- 1. Déterminer la période propre de l'oscillateur fourche.
- 2. a- Citer deux rôles de la fourche VTT.
 - b- Dans le cas d'une utilisation classique d'un V.T.T qui joue le rôle de l'excitateur ?
- 3. A quel phénomène assiste-t-on lorsque la valeur de la fréquence de l'excitateur est très proche de la fréquence propre du système ? Quelles en sont les conséquences directes sur l'utilisation du vélo ?
- 4. Quelles sont les causes de l'amortissement des oscillations ?

Lycée Teboulba Prof : Ben Kahla Jawher 4ème Sc exp Devoir de synthèse n°2 Sciences physiques 4/6

Chimie:

Exercice n°2:


Figure 2

Physique : Exercice n°2:

Energies en

Figure 3

